
Texas Instruments

USB 2.0 RNDIS Driver Design

 Version 1.0

June 29, 2005

Confidential
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right
to change or discontinue these products without notice.

Version 1.0 – June 29, 2005 i

USB 2.0 RNDIS Driver Design

Important Notice
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue any
product or service without notice. Customers should obtain the latest relevant information before placing orders and
should verify that such information is current and complete. All products are sold subject to TIs terms and conditions of
sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to
support this warranty. Except where mandated by government requirements, testing of all parameters of each product is
not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their
products and applications using TI components. To minimize the risks associated with customer products and
applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in
which TI products or services are used. Information published by TI regarding third-party products or services does not
constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property of the third party, or a
license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with
alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or
service voids all express and any implied warranties for the associated TI product or service and is an unfair and
deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

 Telephony www.ti.com/telephony

 Video & Imaging www.ti.com/video

 Wireless www.ti.com/wireless

Mailing Address:

Texas Instruments
Post Office Box 655303, Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

ii Version 1.0 – June 29, 2005

About This Guide

About This Guide
This design guide describes the USB 2.0 RNDIS driver, TI’s new initiative on USB front. The USB 2.0 device
controller empowers communication processors with the distinct advantage of a widely popular interface and a
much higher data rate than the earlier generation USB 1.1 device controllers used in current communication
processors. In addition to driver details, this document describes various user interfaces and management
mechanisms.

Note:
This document does not discuss either USB 2.0 Protocol or RNDIS, and does not
describe how each specific routine should be implemented.

Deliverables

The deliverable of the project is the USB 2.0 RNDIS device driver.

Platform Deliverables

VxWorks USB 2.0 RNDIS END Driver

Linux USB 2.0 RNDIS Net Driver

Terms and Abbreviations

Term/Abbreviation Description

CLI Command Line Interface

END Enhanced Network Driver (VxWorks)

HAL Hardware Abstraction Layer

NDIS Network Driver Interface Specification (Microsoft)

RNDIS Remote NDIS

USB Universal Serial Bus

Version 1.0 – June 29, 2005 iii

USB 2.0 RNDIS Driver Design

Related Documentation
• USB 2.0 Specification

(http://www.usb.org/developers/)

• RNDIS Specification
(http://www.microsoft.com/hwdev/resources/hwservices/rndis.asp)

• USB 2.0 Silicon Design
(http://www.dal.asp.ti.com/dsl/projects/ip-mod/usb20-device/module-usb20.htm)

• CPPI USB 2.0 HAL API Document
(http://www.india.ti.com/~sabya/project/USB/DOCS/usb_2.0_hal.pdf)

Revision History
Revision Author Date Comments Version

0.1 Sabyasachi Dey Jul 31, 2003 Initial draft created. 0.1

0.2 Sabyasachi Dey Sep 10, 2003 Modified Protocol Driver section for APIs,
buffer management, task description.
Completed IOCTL commands.

0.2

1.0 Eyal Reizer June 29, 2005 Updated 1.0

Trademarks
The TI logo design is a trademark of Texas Instruments Incorporated. All other brand and product names may be
trademarks of their respective companies.

This document contains proprietary information of Texas Instruments. The information contained herein is not to
be used by or disclosed to third parties without the express written permission of an officer of Texas Instruments
Incorporated.

iv Version 1.0 – June 29, 2005

http://www.usb.org/developers/
http://www.microsoft.com/hwdev/resources/hwservices/rndis.asp
http://su102l.lsdo.ssi1.com/deseng/titan/
http://www.india.ti.com/%7Esabya/project/USB/DOCS/usb_2.0_hal.pdf

Table of Contents

Table of Contents

Chapter 1 System Overview...1-1

Chapter 2 Design Considerations..2-1
2.1 Assumptions and Dependencies ..2-1
2.2 Hardware Limitations ...2-1
2.3 Design Goals and Guidelines..2-1
Chapter 3 System Architecture..3-1

Chapter 4 Detailed Design..4-1
4.1 USB Protocol Driver ...4-1

4.1.1 Component Description..4-1
4.1.2 Interface Description ..4-2
4.1.3 Design Description ...4-7

4.2 USB RNDIS Driver...4-12
4.2.1 Component Description..4-12
4.2.2 Interface Description ..4-13
4.2.3 Design Description ...4-18

4.3 VxWorks END Driver ..4-20
4.3.1 Component Description..4-20
4.3.2 Interface Description ..4-20
4.3.3 Design Description ...4-20

Chapter 5 USB IOCTL Operations ...5-1

Chapter 6 RNDIS IOCTL Operations..6-1

Chapter 7 USB Error List ..7-1

Chapter 8 RNDIS Error List ..8-1

Version 1.0 – June 29, 2005 v

USB 2.0 RNDIS Driver Design

List of Figures
Figure 1-1. USB Bus Topology...1-1
Figure 1-2. Data Flow in USB...1-2
Figure 3-1. Architecture Overview..3-1
Figure 4-1. USB 2.0 Protocol Driver ...4-1
Figure 4-2. USB Device Enumeration ..4-9
Figure 4-3. USB Control Data Flow..4-10
Figure 4-4. Bulk Data Transfer Sequence Diagram ...4-11
Figure 4-5. USB RNDIS Driver ...4-12
Figure 4-6. RNDIS Response Buffer Pool..4-20

vi Version 1.0 – June 29, 2005

Chapter 1

System Overview

USB mandates a host-driven communication flow and allows only pull-mode data transfer. That means the data is
pulled from a device by the host. The host initiates any communication to and from any device. The USB
elements hierarchy is shown in Figure 1-1. There can be only one host in any USB system.

Figure 1-1. USB Bus Topology

The USB host is the root-most point in the USB connectivity hierarchy. The USB devices are connected in a
tiered star topology. The root hub (integrated in the host) is the root of this tree. Data communication always
takes place between a device and USB host.

Version 1.0 – June 29, 2005 1-1

USB 2.0 RNDIS Driver Design

The USB 2.0 device can only communicate with a 2.0 host controller.

Figure 1-2. Data Flow in USB

The software developed is a driver for a USB 2.0 device function. In addition, the driver contains an RNDIS driver
to communicate with the RNDIS protocol stack on the host side. The software also comprises a network interface
to bind the software to the device operating system (VxWorks, Linux, WinCE) IP Protocol Stack.

1-2 Version 1.0 – June 29, 2005

Chapter 2

Design Considerations

2.1 Assumptions and Dependencies

The following assumptions are made for USB 2.0 software design:

• A well-documented HAL (Hardware Abstraction Layer) is available.

• Implementation is performed only in ANSI C. However, no assumptions should be made regarding the
compiler.

• Only the management and configuration interface is exposed to the end user. Proper documentation should
accompany the software for the users reference.

2.2 Hardware Limitations

• The hardware does not support an MIB-II counter.

• All USB 2.0 CPPI channels must be torn down together. Individual channel tear-down is not possible.

2.3 Design Goals and Guidelines

The following design goals and guidelines were considered when designing USB 2.0 RNDIS driver software.
These design goals and guidelines are applicable at a macro level and deviation from them may be required at
the micro level in the submodules in the USB software. Some of the guidelines are also applicable for coding.

• Portability across VxWorks, Windows CE, Linux

• Standard compliance (USB 2.0, RNDIS)

• Quality strategies conforming to TII processes

• Hooks for easy debugging and testing

• Performance and scalability

Version 1.0 – June 29, 2005 2-1

USB 2.0 RNDIS Driver Design

• Focus on space optimization, since memory becomes expensive for SOCs

• Reusable and modular design of software

• Localize C variables, to enable the compiler to optimize register and stack usage

• Try not to use more than four formal parameters for C functions

• Try to align buffers and commonly used data structures on a 16-byte boundary rather than the commonly
used 32-bit boundary. This uses MIPS cache lines more efficiently. (Although the driver does not make any
assumption about the processor, this is useful as all TI communication processors are based on MIPS.
Similar processors tend to offer 16-byte cache lines, making this proposition more valuable). All routines
should return a status and should not return void.

• The driver should not try to use direct C data types. Instead it should use either OSAL- or PSP-defined data
types.

2-2 Version 1.0 – June 29, 2005

Chapter 3

System Architecture

The USB 2.0 driver software enables application software to communicate with the host using the USB device
function as an Ethernet-type communication interface. The high-level architecture of the driver software is shown
in the following diagram.

USB RNDIS Driver

Vx Works END
Driver

USB 2.0 HAL

USB 2.0 Device
Hardware

PSP USB 2.0 Driver

BSTC HAL

CPPI 3.0 Interface

P
S
P

S
A
L

PSP SAL

Mgmt
Utilities

USB 2.0 Protocol Driver

Figure 3-1. Architecture Overview

Version 1.0 – June 29, 2005 3-1

USB 2.0 RNDIS Driver Design

As shown in Figure 3-1, the USB system software consists of the following components:

• USB 2.0 HAL: CPPI 3.0-based USB 2.0 CP HAL. This provides support for accessing 2.0 Silicon in an
abstract hardware-neutral way. Data communication is governed by TI proprietary CPPI-based technology.
This is same as other CP HALs, except regarding endpoint 0. This HAL defines a set of routines to control,
receive and transmit data over endpoint 0.

Note:
USB HAL is not discussed further in this document.

Details of HAL APIs and data structures can be found in the HAL API document (refer to the Related
Documents section). This module is operating-system-neutral, but hardware-dependent.

• USB Protocol Driver: This module implements the USB 2.0 protocol. It takes care of endpoint initialization,
enumeration and control of data transfer. The upper-layer RNDIS stack depends on this layer for
communicating with the other side of the RNDIS pipe. This module is hardware-independent and
OS-abstracted.

• USB RNDIS Driver: The RNDIS driver enables the USB 2.0 device function to implement an Ethernet-type
interface, which can provide TCP/IP connectivity. The driver software in discussion implements the RNDIS
stack on top of the USB 2.0 protocol. This module is hardware-independent and OS-abstracted.

• VxWorks END Driver: The USB RNDIS driver implements the END interface to allow VxWorks applications
to transfer IP packets over this communication interface. This is the only OS-dependent part of the driver
software.

• Management and Configuration Utility: This is a simple command line interface (CLI). This utility is helpful
in status monitoring, event logging, statistics, device testing, and so on. Some data structures in the USB
driver software are accessible through this interface. The management utilities may vary from release to
release. In the future, a web-based interface may be exposed.

A well-defined and clean interface is maintained between all layers in the driver stack.

Throughout the document the word “task” and “thread” are used interchangeably, and always mean exactly the
same entities. An independent control of action. And of course each “thread” or “task” can see each other’s
memory.

Note:
The detailed startup sequence is platform-specific and will be added later. However,
there will be an option to start the USB driver during system boot time, or later as a
standalone driver. This can be a boot parameter like bootline in VxWorks.

3-2 Version 1.0 – June 29, 2005

Chapter 4

Detailed Design

4.1 USB Protocol Driver

4.1.1 Component Description
The USB protocol driver is a USB 2.0 protocol-specific implementation of the driver. This module is responsible
for silicon initialization, device function enumeration, control and bulk data transfer with the USB host.

Mgmt & ConfigRNDIS

USB 2.0 HAL

USB Protocol Driver Interface

Init/Cfg
Manager

MIB
ManagerEP Manager

HAL Interface

Figure 4-1. USB 2.0 Protocol Driver

Version 1.0 – June 29, 2005 4-1

USB 2.0 RNDIS Driver Design

The USB protocol driver has the following high-level functional components, as shown in Figure 4-1:

• USB Protocol Driver Interface (UPDI): This interface enables any upper-layer component to interact with
the host-side driver using the USB protocol driver. This interface also enables multiple higher-layer
components to connect to the same USB 2.0 protocol driver layer. As a result, the USB protocol driver can be
reused for various device functionalities in addition to RNDIS. The interface has routines to initialize the
protocol driver, as well as all necessary data transfer and control routines. Upper-layer drivers are normally
USB class drivers.

• Endpoint (EP) Manager (EPM): The endpoint manager performs all control and bulk data transfer with the
HAL. All data packets are delivered to upper-layer class drivers using multiplexing pipes. Control packets
targeted to the protocol driver are either processed by it or passed over to the upper-layer class driver.

• Initialization and Configuration Manager (ICM): This module initializes the USB 2.0 hardware with the help
of HAL. USB enumeration, device class information and configuration information is kept in a configuration
repository. This repository is modifiable dynamically through the management interface.

• MIB Manager: Implement MIB-II RFCs. MIB statistics are available through OS-specific driver interfaces
(END driver IOCTL, and so on), or through USB management APIs.

• HAL Interface: This module interfaces with the USB 2.0 CPPI HAL.

The protocol driver actually implements the USB device function. It initializes all endpoints, responds to all host
driver queries, and enables class drivers to establish communication.

4.1.2 Interface Description
All USB protocol interface routines are defined below.

NAME usb_drv_init Initializes the USB protocol driver.

SYNOPSIS USB_STATUS usb_drv_init
 (
 [in] CLASS_DEV *class_dev,
 out] USB_DEV **dev [
);

 class_dev This structure contains all class driver-related
information (such as, RNDIS communication class
driver, and so on).

dev USB device structure. This structure contains all
device-specific information and is passed during
initialization.

DESCRIPTION USB protocol driver initialization happens when this routine is called. Before calling
this routine, nothing can be assumed about the device state. The class driver calls
this function to initialize the USB protocol stack and to populate all class driver
related information.

RETURN VALUES USB_STATUS_OK: Initialization successful.

Negative value: Error. See error list.

4-2 Version 1.0 – June 29, 2005

Detailed Design

NAME usb_drv_start Class drivers register themselves by calling this
protocol driver API.

SYNOPSIS USB_STATUS usb_drv_start
 (
 [in] USB_DEV *p_dev,
 [in] USB_CONFIG *usbcfg

);

p_dev Pointer to the USB device previously obtained by
calling usb_drv_init.

usbcfg Pointer to USB protocol configuration information
(descriptors).

DESCRIPTION Starts the protocol driver. Brings it to a state for data transfer. Interrupt service
routines are connected to the OS. Timers (if they exist) are started.

RETURN VALUES USB_STATUS_OK: Start succeeded.

Negative value: Error. See error list.

NAME usb_drv_stop Class driver (RNDIS) stops the protocol driver.

SYNOPSIS USB_STATUS usb_drv_stop ([in] USB_DEV *p_dev);
 p_dev Pointer to the USB device obtained through the

previous call to usb_drv_init().
DESCRIPTION Class drivers stop the protocol driver. It is then in a state where no data transfer is

possible. All pending transfers are aborted. Interrupt service routines are
deregistered with the OS. Any running timers are canceled.

RETURN VALUES USB_STATUS_OK: Stop operation successful.

Negative value: Error. See error list.

NAME usb_drv_shutdown Shuts down the protocol driver.

SYNOPSIS USB_STATUS usb_drv_shutdown ([in] USB_DEV
*p_dev);

 p_dev Pointer to the USB device obtained through the
previous call to usb_drv_init().

DESCRIPTION Shuts down the driver. All memory and buffers are released. Any other OS
resources (semaphore, mutex, timer, and so on) are released. HAL is lost.

RETURN VALUES USB_STATUS_OK: Clean shutdown.

Negative value: Error. See error list.

Version 1.0 – June 29, 2005 4-3

USB 2.0 RNDIS Driver Design

NAME usb_drv_send Class drivers send data over USB using this routine.

SYNOPSIS USB_STATUS usb_drv_send
 (
 [in] USB_DEV *p_dev,
 [in] USB_EP *ep,
 [in] USB_PKT *pkt,
 [in] VOID *sendInfo

);
 p_dev The descriptor obtained after calling usb_drv_init().

ep Endpoint (opened before) over which communication
takes place.

pkt USB data packet. Class drivers (such as RNDIS)
create this packet, which has a packet ID and a data
buffer.

sendInfo Any private information. This is returned to the caller with the
send_complete() routine.

DESCRIPTION Send is a non-blocking call. This means, that send returns immediately. However,
data transmission over the USB bus may not be complete. When data transfer is
completed, the USB protocol driver calls the send_complete() routine
corresponding to the class driver.

RETURN VALUES USB_STATUS_OK: Send accepted by the protocol driver.

Negative value: Error. See error list.

4-4 Version 1.0 – June 29, 2005

Detailed Design

NAME usb_drv_ioctl This API provides a strong control/configuration
interface for the protocol driver.

SYNOPSIS
USB_STATUS usb_drv_ioctl
 (
 [in] USB_DEV *p_dev,
 [in] UINT32 command,
 [inout] VOID *data

);
 p_dev Pointer to the USB device obtained through the

previous call to usb_drv_init().

command USB device structure. This structure contains all
device-specific information and is passed during
initialization.

data Data buffer related to the command.

DESCRIPTION USB protocol driver initialization is performed when this routine is called. Before
calling this routine, nothing can be assumed about the device state. A detailed list
of IOCTL commands can be found in Chapter 6.

RETURN VALUES USB_STATUS_OK: Success.

Negative value : Error. See error list.

NAME usb_drv_ep_open Callback routine to be called by HAL.

SYNOPSIS USB_STATUS usb_drv_ep_open
 (
 [in] USB_DEV *p_dev,
 [in] USB_PIPE *pipe,
 USB_EP **p_ep [out]
);

 p_dev Pointer to the USB device obtained through the
previous call to usb_drv_init().

pipe Pointer to the PIPE structure. A pipe is defined by the
class driver and sent to the USB protocol driver. The
pipe is a bi-directional communication channel
between the protocol driver and the class driver.

p_ep Pointer to the initialized endpoint.

DESCRIPTION USB protocol driver initialization happens when this routine is called. Before calling
this routine, nothing can be assumed about the device state.

RETURN VALUES USB_STATUS_OK: Success.

Negative value: Error. See error list.

Version 1.0 – June 29, 2005 4-5

USB 2.0 RNDIS Driver Design

NAME usb_drv_ep_close Callback routine called by HAL.

SYNOPSIS USB_STATUS usb_drv_ep_close
 (
 [in] USB_EP *p_ep

);
 dev USB device structure. This structure contains all

device-specific information and is passed during
initialization.

DESCRIPTION USB protocol driver initialization is performed when this routine is called. Before
calling this routine, nothing can be assumed about the device state.

RETURN VALUES USB_STATUS_OK: Success.

Negative value: Error. See error list.

NAME usb_drv_send_complete Routine to be called by HAL

SYNOPSIS
INT32 usb_drv_send_complete_cb
 (
 [in] USB_PIPE *pipe,
 [in] VOID *sendInfo

);
 sendInfo Pointer to OS-specific information. This structure was passed to

the CPHAL via Send(), and returned to the OS here.
DESCRIPTION Indicates to the class driver that the transmission is complete. The USB driver may

not have checked the return value. This routine is implemented by the class driver
for each communication pipe (endpoint) that the class driver intends to send data
through.

RETURN VALUES 0: Initialization successful.

Non-zero: Error. (Currently, not checked by the USB protocol driver).

NAME usb_drv_os_receive OS receive function called by HAL.

SYNOPSIS
INT32 usb_drv_os_receive
 (
 [in] OS DEVICE *OsDev,
 [in] FRAGLIST *FragList,
 [in] bit32u FragCount,
 [in] bit32u PacketSize,
 [in] HAL_RECEIVEINFO HalReceiveInfo,
 [in] bit32u mode
);

4-6 Version 1.0 – June 29, 2005

Detailed Design

 OsDev OS device structure (refer HAL document).

FragList Array of structure consisting of three 32-bit words
(containing length, data address, and OsInfo).

FragCount Number of {length,data} pairs in FragList.

PacketSize Number of bytes received.

HalReceiveInfo Pointer to HAL information, returned to the HAL via
RxReturn().

Mode The lower eight bits of this value is the channel
number.

Note: Mode and 0xff = channel number undocumented.

DESCRIPTION USB protocol driver initialization happens when this routine is called. Before calling
this routine nothing can be assumed about the device state.

RETURN VALUES 0: Success.

Non-zero: Error. See error list.

Note:
For HAL OS service routines, refer to HAL documentation.

4.1.3 Design Description
This section defines key data structures used by USB Protocol Driver and important data/control flow diagrams.

Key Data Structures:
• USB_DEV

• USB_EP

• USB_PKT

USB_DEV: Defines the USB protocol driver master control block.

struct USB_DEV_T
{
 OSAL_MUTEX mutex;
 HAL_DEVICE hal_dev;
 HAL_FUNCTIONS *hal_funcs;
 OS_FUNCTIONS *os_funcs;
 USB_CONFIG *usb_cfg;
 USB_CD_CONFIG *cd_cfg; /* Class Driver Configuration */
 USB_EP p_control; /* Control End Point */
 USB_EP ep_table[USB20_NUM_EP];
 USB_CCPU *ccpu; /* Control Command Processor Unit */
 USB_CTL_TX_QUEUE_NODE *ctl_tx_queue;
 USB_CTL_TX_QUEUE_NODE *ctl_tx_free_list;
 USB_PARAMS params;
 USB_STATS stats;
 USB_CHANNEL channel[USB20_NUM_CHANNEL]; /*Status per channel*/

Version 1.0 – June 29, 2005 4-7

USB 2.0 RNDIS Driver Design

 UINT32 status; /* Status of driver */
 UINT32 link_status; /* Link is up or down */
 VOID *priv; /* Private Data for USB */
} ;

USB_EP: Defines the USB endpoint structure.

struct USB_EP_T
{
 UINT8 id; /* End Point Number */
 UINT8 type; /* BULK | CONTROL | INT */
 UINT8 dir; /* End Point Direction */
 UINT8 max_size; /* Maximum Transfer Size on this End Point */
 USB_PIPE *pipe; /* Pipe configured by Class Driver */
 USB_DEV *usb_dev; /* Pointer to USB Device structure, driver MCB */
 CHANNEL_INFO *channel; /* HAL Specific channel information, type is opaque
 to upper layer */
 UINT32 state: 8;
 UINT32 status: 24;
} ;

USB_PKT:

struct USB_BUF_T {
 UINT8 *data;
 UINT32 len;
 void *info;
} ;

struct USB_PKT_T
{
 USB_BUF *buf_list;
 UINT32 num_buf;
 UINT32 pkt_size;
} ;

Bipartite Buffer Management

Buffer management responsibilities are split between the protocol driver and the class driver. For bulk and
isochronous data transfer, buffer management is performed by the class driver, whereas for control and interrupt
data transfer, buffer management is performed by the protocol driver. This eliminates the need for the protocol
driver to understand the details of bulk/isochronous data transfer policies and mechanisms. However, the protocol
driver facilitates a generic buffer management policy for the class driver.

Driver Tasks

The driver has two tasks, as follows:

• Control Task: All USB interrupts (basically, control endpoint-related interrupts) are serviced in this task. Task
Priority for this should be high, as all such interrupts and associated responses must meet strict timing
requirements.

• Data Task: Reception of bulk/isochronous packets and dispatching of them to upper layers is performed in
this task. This does not require high priority.

Both the above tasks are configurable and can be excluded/included in the driver configuration (optional).

4-8 Version 1.0 – June 29, 2005

Detailed Design

4.1.3.1 Enumeration Sequence

The following diagram describes USB device enumeration sequence.

USB Bus USB 2.0
Driver

RNDIS
DriverHAL

USB RESET

GET DESCRIPTOR

Reset Interrupt
Reset Event

SET ADDRESS

EP0 Send ()
(Descriptors)

SET CONFIG
EP0 Recv ()

Config Event

EP0 Recv ()

Descriptors

EP0 Recv ()

Figure 4-2. USB Device Enumeration

Version 1.0 – June 29, 2005 4-9

USB 2.0 RNDIS Driver Design

4.1.3.2 Control Data Transfer Sequence

The following diagram describes the control data transfer sequence

USB Bus USB 2.0
Driver

RNDIS
DriverHAL

EP0 OUT Data

Class Request Handler

STD Response

EP0 OUT Data

STD Request

Class Request

Class Response

EP0 IN Data

EP0 IN Data

Class Response

Figure 4-3. USB Control Data Flow

4-10 Version 1.0 – June 29, 2005

Detailed Design

4.1.3.3 Bulk Data Transfer Sequence

The following diagram describes the bulk data transfer sequence

USB Bus USB 2.0
Driver

RNDIS
DriverHAL END / Net

Device Driver

Bulk OUT Data
usb_drv_recv()

END_RCV_RTN

Rndis Send()

Rndis_send()

Bulk IN Data

Rndis_recv()

Recv_return
Recv_complete()

Usb_drv_send

OSSendComplete
Rndis SendComplete

ENDSendComplete

Figure 4-4. Bulk Data Transfer Sequence Diagram

Version 1.0 – June 29, 2005 4-11

USB 2.0 RNDIS Driver Design

4.2 USB RNDIS Driver

4.2.1 Component Description
The PSP USB RNDIS protocol stack implements the RNDIS 1.1 protocol specification from Microsoft. All RNDIS
components are shown in Figure 4-5.

Buffer
Manager

RNDIS - USB Interface (Using UPDI)

END
Driver

USB 2.0
Protocol Driver

Mgmt
Utilities

RNDIS Driver Interface

Init/Reset Unit
Network

Data
Transfer

Unit

Control
Unit

MIB
Manager

State Machine

Figure 4-5. USB RNDIS Driver

USBD has the following functional components:

• Network Data Transfer Unit: This unit provides a communication channel through logical pipes and IRPs.
Client software sends and receives data to/from devices through this module.

• Control Unit: This unit provides a set of APIs for pipe management, data transfer, and so on.

• Buffer Manager: Controls the bus with the help of HCD. This module manages bus state. In addition, if there
is an error on the bus, this module notifies all clients about the bus-related events, such as suspension,
resumption and reset.

• MIB Manager: This unit maintains the active topology. It is responsible for configuring newly attached
devices and adding them to the active topology, and for removing detached devices from the active topology.

• Init/Reset Unit: Manages all hubs attached to the bus. The hub driver runs as an independent separate task.
If a new device is attached, the hub is first notified through the control pipe of the hub. When a device is
detached, the hub driver is notified. If the detached device is a hub, this unit ensures that all children of the
hub are also disconnected and removed from the active topology.

• State Machine: This consists of a set of routines that calculate bandwidth requirements and availability for a
particular endpoint. Depending on this, a particular bus transaction may be accepted or refused.

4-12 Version 1.0 – June 29, 2005

Detailed Design

• RNDIS Driver Interface: These APIs form a library that is used by both the HCD as well as the root hub
driver. The API set includes bandwidth management routines, HCD registration routines, bus and device
structures management routines, device configuration routines, and so on.

• USB Protocol Driver Interface: Exposes a set of routines that enable an application to list all devices
attached, bus status, modify device configuration, and to see the USBD log.

4.2.2 Interface Description
USBD exposes two independent sets of interfaces. The first is called the USBD Interface (USBDI). This interface
is documented and published. The second is a collection of management and configuration routines. This
interface is neither documented nor published. This second interface is intended to enable TI internal teams to
provide utilities and a framework for USB management and configuration.

RNDIS Driver Interface

NAME usb_rndis_init Initializes RNDIS driver.

SYNOPSIS RNDIS_HANDLE usb_rndis_init
 (
 [in] rndis_net_t *rndis_net
);

 rndis_net This structure contains all information required for
initializing the driver and is passed during
initialization. This includes the callback routines and
configuration data.

DESCRIPTION RNDIS driver initialization is performed when this routine is called. It is typically
called as part of the END driver load function (Ref: VxWorks Network
Programming).

The callback routines are for the following functionality:

• OS (system) sending complete notification

• OS (system) receiving data

• Getting buffers (for receiving)

• Freeing-up of buffers

• Event transfer callback

RETURN VALUES Non-null value: Initialization successful.

NULL value: Error. See error list.

NAME usb_rndis_start Starts the RNDIS driver.

SYNOPSIS RNDIS_STATUS usb_rndis _start (
 [in] RNDIS_HANDLE handle

);
 handle Handle to the RNDIS layer.

Version 1.0 – June 29, 2005 4-13

USB 2.0 RNDIS Driver Design

DESCRIPTION This starts the RNDIS driver and brings up the stack so that data transmission can
be started.

Here, the endpoints are opened for the control and data channels. Callback
routines for these endpoints are registered with the calls to usb_drv_ep_open.

RETURN VALUES RNDIS_STATUS_OK: Call successful.

Negative value: Error. See error list.

NAME usb_rndis _stop Halts the RNDIS driver.

SYNOPSIS RNDIS_STATUS usb_rndis_stop (
 [in] RNDIS_HANDLE handle

 handle Handle to the RNDIS layer.
DESCRIPTION This is a complementary function to rndis_usb_start. The function halts the RNDIS

stack and disables all further bulk data transactions.

RETURN VALUES RNDIS_STATUS_OK: Success.

 Negative value: Error.

NAME usb_rndis_shutdown Unloads the RNDIS driver.

SYNOPSIS RNDIS_STATUS usb_rndis_unload (
 [in] RNDIS_HANDLE handle

 handle Handle to the RNDIS layer.
DESCRIPTION This is a complementary function to rndis_usb_load. The function cleans up all the

initializations performed in rndis_usb_load.

RETURN VALUES RNDIS_STATUS_OK: Success.

Negative value: Error.

NAME usb_rndis_send Sends a data packet over the USB bus using the
RNDIS protocol.

SYNOPSIS RNDIS_STATUS usb_rndis_send
 (
 [in] RNDIS_PKT *packet,
);

 packet Array of buffers containing the packet.
DESCRIPTION This function is used by the OS-specific driver to send a packet over the USB bus

(as bulk data).

4-14 Version 1.0 – June 29, 2005

Detailed Design

RETURN VALUES RNDIS_STATUS_OK: Success.

Negative value: Error.

NAME usb_rndis_ioctl Configures/controls API to the RNDIS driver.

SYNOPSIS RNDIS_STATUS usb_rndis_ioctl
 (
 [in] RNDIS_HANDLE handle,
 [in] INT32 command,
 [inout] UINT32 *data
);

 command Identifier for the command to execute.

data Data for the command.

DESCRIPTION This API gives an interface to the OS driver to configure and control the RNDIS
driver. It also provides an interface to query for some data (such as, MIB data). It
also acts as a method of reporting events to the RNDIS-USB drivers.

RETURN VALUES RNDIS_STATUS_OK: Success.

Negative value: Error.

USB Protocol Driver Interface

NAME usb_rndis_notify_cb Routine for the USB protocol driver to notify RNDIS
about events.

SYNOPSIS RNDIS_STATUS usb_rndis_notify_cb
 (
 [in] INT32 event,
 [in] UINT32 *data

);
 command Identifier for the event.

data Data associated with the event.

DESCRIPTION This function is registered with the USB protocol driver during initialization. The
USB driver uses this API to notify the RNDIS driver about events that occur at the
USB layer, hardware layer, and so on. A typical example of an event that is
notified is the USB reset event.

RETURN VALUES RNDIS_STATUS_OK: Success.

Negative value: Error.

Version 1.0 – June 29, 2005 4-15

USB 2.0 RNDIS Driver Design

NAME usb_rndis_query_cb Routine for the USB protocol driver to query RNDIS
for information.

SYNOPSIS RNDIS_STATUS usb_rndis_query_cb
 (
 [in] INT32 query_id,
 [out] UINT32 *data
);

 command Identifier for the query.

data Data associated with the query.

DESCRIPTION This function is registered with the USB protocol driver during initialization. The
USB driver uses this API to query the RNDIS driver for information it requires. A
typical example of a query is when the USB driver queries for descriptor data.

RETURN VALUES RNDIS_STATUS_OK: Success.

Negative value: Error.

NAME usb_rndis_control_rcv_cb Function to receive data on the control
endpoint.

SYNOPSIS RNDIS_STATUS usb_rndis_control_rcv_cb
 (
 [in] ep_t * ep
 [in] RNDIS_PKT *pkt,
);

 ep Handle to the endpoint.

pkt Packet with received data.
DESCRIPTION This function is registered with the USB protocol driver during initialization as the

receive callback function for EP0. The USB driver uses this API to send the RNDIS
driver data from EP0 endpoint.

RETURN VALUES RNDIS_STATUS_OK: Success.

Negative value: Error.

NAME usb_rndis_control_tx_complete_cb This function notifies completion of
transmit on the control endpoint.

SYNOPSIS RNDIS_STATUS usb_rndis_control_tx_complete_cb
 (
 [in] ep_t *ep
 [in] VOID *sendInfo,

);
 ep Handle to the endpoint.

sendInfo Private information sent during send call.

4-16 Version 1.0 – June 29, 2005

Detailed Design

DESCRIPTION During initialization, this function is registered with the USB protocol driver as the
transmit-complete notification callback function for EP0. The USB driver uses this
API to indicate the completion of the transmit to the RNDIS driver, and also
whether any error occurred during transmit.

RETURN VALUES RNDIS_STATUS_OK: Success.

Negative value: Error.

NAME usb_rndis_int_tx_complete_cb This function notifies of completion of
transmit on the interrupt endpoint.

SYNOPSIS RNDIS_STATUS usb_rndis_int_tx_complete_cb
 (
 [in] ep_t * ep,
 [in] VOID *sendInfo,
);

 ep Handle to the endpoint.

sendInfo What was passed during the send() call.

DESCRIPTION During initialization, this function is registered with the USB protocol driver as the
transmit-complete notification callback function for EP0. The USB driver uses this
API to indicate the completion of the transmit to the RNDIS driver, and also
whether any error occurred during transmit.

RETURN VALUES RNDIS_STATUS_OK: Success.

Negative value: Error.

NAME usb_rndis_bulk_rcv_cb Function to receive data on the bulk endpoint.

SYNOPSIS INT32 usb_rndis_bulk_rcv_cb
 (
 [in] ep_t * ep
 [in] RNDIS_PKT *pkt,

);
 ep Handle to the endpoint.

pkt Packet with received data.
DESCRIPTION This function is registered with the USB protocol driver during initialization as the

receive callback function for the bulk/data endpoint. The USB driver uses this API
to send the RNDIS driver data from the bulk OUT endpoint of the RNDIS data
interface.

RETURN VALUES RNDIS_STATUS_OK: Success.

Negative value: Error.

Version 1.0 – June 29, 2005 4-17

USB 2.0 RNDIS Driver Design

NAME usb_rndis_bulk_tx_complete_cb Function to notify of completion of
transmit on the bulk endpoint.

SYNOPSIS INT32 usb_rndis_bulk_tx_complete_cb
 (
 [in] ep_t * ep
 [in] int pkt_id,
 [in] int tx_status
);

 ep Handle to the endpoint.

buf ID of the packet that was sent.

tx_status Error status of the transmission.

DESCRIPTION During initialization, this function is registered with the USB protocol driver as the
transmit-complete notification callback function for the bulk endpoint. The USB
driver uses this API to indicate the completion of the transmit of bulk data to the
RNDIS driver, and also whether any error occurred during the transmission. Here,
the OS END driver is notified of the transmit-complete event and the freeing-up of
buffers can take place.

RETURN VALUES RNDIS_STATUS_OK: Success.

Negative value: Error.

4.2.3 Design Description
The USB driver is built around several key data structures. This section describes the key data structures
maintained by the USB driver.

typedef struct RNDIS_MCB
{
 /********************** USB Descriptors ******************************/
 USB_DEVICE_DESCRIPTOR *ptr_device_desc;
 RNDIS_USB_CONFIG*ptr_config_desc;
 HAL_USB_STRING_ENTRY*ptr_string_desc;

 /********************** HANDLE **************************************/
 USB_HND h_drv; /* USB Driver handle */
 HAL_HND h_end; /* Handle of the END driver. */
 HAL_HND ctrl_in; /* Control IN endpoint handle */
 HAL_HND ctrl_out; /* Control OUT endpoint handle */
 HAL_HND intr_in; /* INTERRUPT endpoint handle */
 HAL_HND bulk_in; /* BULK IN endpoint handle */
 HAL_HND bulk_out; /* BULK OUT endpoint handle */

 /********************* RNDIS Protocol *******************************/

 RNDIS_STATE state; /* RNDIS Stack Current State */
 UINT8 host_macadd_cur[6]; /* HOST MAC Address */
 UINT8 host_macadd_default[6]; /* Permanent HOST MAC Address */

4-18 Version 1.0 – June 29, 2005

Detailed Design

 UINT32 packet_filter; /* PACKET Filter (Multicast / Promiscuous
/ Broadcast / Directed */

/* These lists handle the responses for control messages. The FREE list is a list
* of responses messages that are free and can be used by the function layer. The
* response lists contains all the responses that have been queued and will be txed
* to the HOST as and when the HOST will request for them through a GET_ENCAPSULATED
* message. */
RNDIS_RESPONSE* p_free_list;
RNDIS_RESPONSE* p_response_list;

/* Notification response to be sent to the HOST is always constant. Create it once
* and store it in the structure. */
USB_SETUP response_available; /* To be sent over interrupt endpoint */

/* Transmit - For BULK data. */
RNDIS_DATA_HEADER *ptr_bulk_free_list;

/* Multicast Address. The RNDIS layer needs to keep track of the Multicast
* address information that is passed from the HOST. */
UINT8 mcast_list[HAL_USB_MAX_MAC_MCAST_LIST][6]; /* Array for Multicast
address */
int mcast_list_size; /* List size in BYTES. */

/* Statistics */
RNDIS_STATS stats; /* Add up count */

} RNDIS_MCB;

typedef struct rndis_ep_t
{
 UINT8 type; /* EP Type (CONTROL|BULK|INT), Dir , Status */
 INT32 (*receive)(struct USB_CLASS_DRV_EP *ep, struct USB_CLASS_DRV_PKT *pkt);
 INT32 (*sendComplete)(struct USB_CLASS_DRV_EP *ep, void *priv);
 USB_ENDPOINT_DESCRIPTOR *epd;
} rndis_ep_t;

struct buf_node {
 char *buf;
 UINT32 len;
 struct buf_node *next;
} buf_node_t;

struct RNDIS_PKT
{
 UINT32 os_pkt_id;
 struct buf_node *head;
};

Version 1.0 – June 29, 2005 4-19

USB 2.0 RNDIS Driver Design

#define RNDIS_MAX_BUFFER_SIZE 512

struct RNDIS_RESPONSE
{
 char data[RNDIS_MAX_BUFFER_SIZE];
 UINT16 len;
 struct RNDIS_RESPONSE *next;
};

bufFree Buffer Pool

VxWorks END
Driver

bufbuf

Figure 4-6. RNDIS Response Buffer Pool

typedef struct RNDIS_DATA_HEADER
{
 char message[44];
 UINT32 chain_id;
 struct RNDIS_DATA_HEADER *next;
}RNDIS_DATA_HEADER;

RNDIS State Transition Diagram

See the Microsoft RNDIS 1.1 Specification.

RNDIS Initialization Flow

See the Microsoft RNDIS 1.1 Specification.

4.3 VxWorks END Driver

4.3.1 Component Description
As per the USB 1.1 RNDIS driver.

4.3.2 Interface Description
As per the USB 1.1 RNDIS driver.

4.3.3 Design Description
As per the USB 1.1 RNDIS driver.

4-20 Version 1.0 – June 29, 2005

Chapter 5

USB IOCTL Operations

IOCTL_GET_USB_CONFIG - Get all descriptors

IOCTL_SET_USB_CONFIG - Set descriptors

IOCTL_GET_STATS_USB - Get USB related status / stats (MIB)

IOCTL_SET_SERIAL_NO - Set USB serial number

IOCTL_GET_SERIAL_NO - Get USB serial number

IOCTL_SET_VENDOR_ID - Set USB vendor ID

IOCTL_GET_VENDOR_ID - Get USB vendor ID

IOCTL_SET_PRODUCT_ID - Set USB product ID

IOCTL_GET_PRODUCT_ID - Get USB product ID

IOCTL_SET_MAX_POWER - Set USB max power

IOCTL_GET_MAX_POWER - Get USB max power

IOCTL_GET_BULK_EP_SIZE - Get USB endpoint size

IOCTL_SET_BULK_EP_SIZE - Set USB endpoint size

IOCTL_GET_INT_EP_SIZE - Get USB endpoint size

IOCTL_SET_INT_EP_SIZE - Set USB endpoint size

IOCTL_GET_CTRL_EP_SIZE - Get USB endpoint size

IOCTL_SET_CTRL_EP_SIZE - Set USB endpoint size

IOCTL_GET_ATTRIB - Get USB attributes

 (Bus/Self-power, remote wakeup support)

Version 1.0 – June 29, 2005 5-1

USB 2.0 RNDIS Driver Design

5-2 Version 1.0 – June 29, 2005

Chapter 6

RNDIS IOCTL Operations

IOCTL_NOTIFY_LINK_STATE - To notify about connection to or disconnection from the host

IOCTL_GET_USB_INFO - Get USB level details, such as, vendor ID, product ID, and so on

IOCTL_GET_STATS_NET - Get network related statistics (Tx/Rx Stats)

IOCTL_GET_STATS_USB - Get USB related status/statistics (MIB)

IOCTL_SET_MIB_INTF_PARAMS - MIB interface functions

IOCTL_GET_MIB_INTF_PARAMS - MIB interface functions

Version 1.0 – June 29, 2005 6-1

USB 2.0 RNDIS Driver Design

6-2 Version 1.0 – June 29, 2005

Chapter 7

USB Error List

Not available.

Version 1.0 – June 29, 2005 7-1

USB 2.0 RNDIS Driver Design

7-2 Version 1.0 – June 29, 2005

Chapter 8

RNDIS Error List

RNDIS_MEMORY_ALLOC_ERROR

RNDIS_INIT_ERROR

RNDIS_START_ERROR

RNDIS_STOP_ERROR

RNDIS_SHUTDOWN_ERROR

RNDIS_SEND_ERROR

RNDIS_RCV_ERROR

RNDIS_USB_PROTO_INIT_ERROR

RNDIS_USB_PROTO_START_ERROR

RNDIS_USB_PROTO_STOP_ERROR

RNDIS_USB_PROTO_SHUTDOWN_ERROR

RNDIS_USB_EP_OPEN_ERROR

RNDIS_USB_EP_SEND_ERROR

RNDIS_USB_EP_RCV_ERROR

RNDIS_USB_EP_CLOSE_ERROR

RNDIS_UNSUPPORTED_IOCTL_ERROR

RNDIS_IOCTL_ERROR

RNDIS_OUT_OF_SYNC_ERROR

RNDIS_INVALID_PROTOCOL_PACKET_ERROR

Version 1.0 – June 29, 2005 8-1

USB 2.0 RNDIS Driver Design

RNDIS_INVALID_CONTROL_PACKET_ERROR

RNDIS_INVALID_ENCAPSULATED_COMMAND_ERROR

RNDIS_NO_RESPONSE_AVAILABLE_ERROR

RNDIS_OUT_OF_HEADER_BUFFERS_ERROR

RNDIS_INCORRECT_VERSION_ERROR

RNDIS_UNSUPPORTED_QUERY_ERROR

RNDIS_BAD_SET_REQUEST_ERROR

8-2 Version 1.0 – June 29, 2005

	Chapter 1
	Chapter 2
	2.1 Assumptions and Dependencies
	2.2 Hardware Limitations
	2.3 Design Goals and Guidelines
	Chapter 3
	Chapter 4
	4.1 USB Protocol Driver
	4.1.1 Component Description
	4.1.2 Interface Description
	4.1.3 Design Description
	4.1.3.1 Enumeration Sequence
	4.1.3.2 Control Data Transfer Sequence
	4.1.3.3 Bulk Data Transfer Sequence

	4.2 USB RNDIS Driver
	4.2.1 Component Description
	4.2.2 Interface Description
	4.2.3 Design Description

	4.3 VxWorks END Driver
	4.3.1 Component Description
	4.3.2 Interface Description
	4.3.3 Design Description

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8

